2012-11-19

Carbon nanotubes 'cloned' by USC researchers

Carbon nanotubes 'cloned' by USC researchers

SAN FRANCISCO—A team of researchers at the University of Southern California (USC) and the National Institute of Standards and Technology (NIST) in Maryland say they have overcome a key hurdle to carbon nanotube manufacturing by inventing a system that consistently produces carbon nanotubes of a predictable diameter and symmetry.

Carbon nanotube transistors—first built by researchers at Delft University in 1998—are widely expected to one day replace silicon transistors in computers and other electronics. Carbon nanotubes have the potential to be far smaller, faster and consume less power than silicon transistors.

But carbon nanotube transistors are difficult to manufacture in a predictable way. Scientists have had a difficult time controlling the manufacture of nanotubes to the correct diameter, type and chirality— a property of asymmetry. All of these factors are critical to controlling nanotubes' electrical and mechanical properties.

Carbon nanotubes are grown using a chemical vapor deposition (CVD) system in which a chemical-laced gas is pumped into a chamber containing substrates with metal catalyst nanoparticles, upon which the nanotubes grow. It is generally believed that the diameters of the nanotubes are determined by the size of the catalytic metal nanoparticles. But attempts to control the catalysts in hopes of achieving chirality-controlled nanotube growth have been unsuccessful.


Chongwu Zhou holds up a piece of plastic substrate used to build nanoscale transistors and circuits.
Credit: USC

TAG:Carbon Nanotube Electronics Clone USC NIST

No comments:

Post a Comment